1344E - Train Tracks - CodeForces Solution


data structures trees *3100

Please click on ads to support us..

C++ Code:

#include<bits/stdc++.h>
#include<ext/pb_ds/assoc_container.hpp>
#include<ext/pb_ds/tree_policy.hpp>
#include<ext/pb_ds/tag_and_trait.hpp>
#define overload4(_1, _2, _3, _4, name, ...) name
#define rep1(i, n) for (ll i = 0; i < ll(n); ++i)
#define rep2(i, s, n) for (ll i = ll(s); i < ll(n); ++i)
#define rep3(i, s, n, d) for(ll i = ll(s); i < ll(n); i+=d)
#define rep(...) overload4(__VA_ARGS__,rep3,rep2,rep1)(__VA_ARGS__)
#define rrep1(i, n) for (ll i = ll(n)-1; i >= 0; i--)
#define rrep2(i, n, t) for (ll i = ll(n)-1; i >= (ll)t; i--)
#define rrep3(i, n, t, d) for (ll i = ll(n)-1; i >= (ll)t; i-=d)
#define rrep(...) overload4(__VA_ARGS__,rrep3,rrep2,rrep1)(__VA_ARGS__)
#define all(a) a.begin(),a.end()
#define rall(a) a.rbegin(),a.rend()
#define SUM(a) accumulate(all(a),0LL)
#define MIN(a) *min_element(all(a))
#define MAX(a) *max_element(all(a))
#define SORT(a) sort(all(a));
#define REV(a) reverse(all(a));
#define SZ(a) int(a.size())
#define popcount(x) __builtin_popcountll(x)
#define pf push_front
#define pb push_back
#define ef emplace_front
#define eb emplace_back
#define ppf pop_front
#define ppb pop_back
#ifdef __LOCAL
#define debug(...) { cout << #__VA_ARGS__; cout << ": "; print(__VA_ARGS__); cout << flush; }
#else
#define debug(...) void(0);
#endif
#define INT(...) int __VA_ARGS__;scan(__VA_ARGS__)
#define LL(...) ll __VA_ARGS__;scan(__VA_ARGS__)
#define STR(...) string __VA_ARGS__;scan(__VA_ARGS__)
#define CHR(...) char __VA_ARGS__;scan(__VA_ARGS__)
#define DBL(...) double __VA_ARGS__;scan(__VA_ARGS__)
#define LD(...) ld __VA_ARGS__;scan(__VA_ARGS__)
using namespace std;
using namespace __gnu_pbds;
using ll = long long;
using ld = long double;
using P = pair<int, int>;
using LP = pair<ll, ll>;
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using vl = vector<ll>;
using vvl = vector<vl>;
using vvvl = vector<vvl>;
using vd = vector<double>;
using vvd = vector<vd>;
using vs = vector<string>;
using vc = vector<char>;
using vvc = vector<vc>;
using vb = vector<bool>;
using vvb = vector<vb>;
using vp = vector<P>;
using vvp = vector<vp>;
using vlp = vector<LP>;
using vvlp = vector<vlp>;
template<class T>
using PQ = priority_queue<pair<T, int>, vector<pair<T, int>>, greater<pair<T, int>>>;

template<class S, class T>
istream &operator>>(istream &is, pair<S, T> &p) { return is >> p.first >> p.second; }

template<class S, class T>
ostream &operator<<(ostream &os, const pair<S, T> &p) { return os << '{' << p.first << ", " << p.second << '}'; }

template<class S, class T, class U>
istream &operator>>(istream &is, tuple<S, T, U> &t) { return is >> get<0>(t) >> get<1>(t) >> get<2>(t); }

template<class S, class T, class U>
ostream &operator<<(ostream &os, const tuple<S, T, U> &t) {
    return os << '{' << get<0>(t) << ", " << get<1>(t) << ", " << get<2>(t) << '}';
}

template<class T>
istream &operator>>(istream &is, vector<T> &v) {
    for (T &t: v) { is >> t; }
    return is;
}

template<class T>
ostream &operator<<(ostream &os, const vector<T> &v) {
    os << '[';
    rep(i, v.size()) os << v[i] << (i == int(v.size() - 1) ? "" : ", ");
    return os << ']';
}

template<class T>
ostream &operator<<(ostream &os, const deque<T> &v) {
    os << '[';
    rep(i, v.size()) os << v[i] << (i == int(v.size() - 1) ? "" : ", ");
    return os << ']';
}

template<class T>
ostream &operator<<(ostream &os, const set<T> &st) {
    os << '{';
    auto it = st.begin();
    while (it != st.end()) {
        os << (it == st.begin() ? "" : ", ") << *it;
        it++;
    }
    return os << '}';
}

template<class T>
ostream &operator<<(ostream &os, const multiset<T> &st) {
    os << '{';
    auto it = st.begin();
    while (it != st.end()) {
        os << (it == st.begin() ? "" : ", ") << *it;
        it++;
    }
    return os << '}';
}

template<class T, class U>
ostream &operator<<(ostream &os, const map<T, U> &mp) {
    os << '{';
    auto it = mp.begin();
    while (it != mp.end()) {
        os << (it == mp.begin() ? "" : ", ") << *it;
        it++;
    }
    return os << '}';
}

template<class T>
void vecout(const vector<T> &v, char div = '\n') {
    rep(i, v.size()) cout << v[i] << (i == int(v.size() - 1) ? '\n' : div);
}

template<class T>
bool constexpr chmin(T &a, T b) {
    if (a > b) {
        a = b;
        return true;
    }
    return false;
}

template<class T>
bool constexpr chmax(T &a, T b) {
    if (a < b) {
        a = b;
        return true;
    }
    return false;
}

void scan() {}

template<class Head, class... Tail>
void scan(Head &head, Tail &... tail) {
    cin >> head;
    scan(tail...);
}

template<class T>
void print(const T &t) { cout << t << '\n'; }

template<class Head, class... Tail>
void print(const Head &head, const Tail &... tail) {
    cout << head << ' ';
    print(tail...);
}

template<class... T>
void fin(const T &... a) {
    print(a...);
    exit(0);
}

template<class T>
vector<T> &operator+=(vector<T> &v, T x) {
    for (T &t: v) t += x;
    return v;
}

template<class T>
vector<T> &operator-=(vector<T> &v, T x) {
    for (T &t: v) t -= x;
    return v;
}

template<class T>
vector<T> &operator*=(vector<T> &v, T x) {
    for (T &t: v) t *= x;
    return v;
}

template<class T>
vector<T> &operator/=(vector<T> &v, T x) {
    for (T &t: v) t /= x;
    return v;
}

struct Init_io {
    Init_io() {
        ios::sync_with_stdio(false);
        cin.tie(nullptr);
        cout.tie(nullptr);
        cout << boolalpha << fixed << setprecision(15);
        cerr << boolalpha << fixed << setprecision(15);
    }
} init_io;

const string yes[] = {"no", "yes"};
const string Yes[] = {"No", "Yes"};
const string YES[] = {"NO", "YES"};
const int inf = 1001001001;
const ll linf = 1001001001001001001;

void rearrange(const vi &) {}

template<class T, class... Tail>
void rearrange(const vi &ord, vector<T> &head, Tail &...tail) {
    assert(ord.size() == head.size());
    vector<T> ori = head;
    rep(i, ord.size()) head[i] = ori[ord[i]];
    rearrange(ord, tail...);
}

template<class T, class... Tail>
void sort_by(vector<T> &head, Tail &... tail) {
    vi ord(head.size());
    iota(all(ord), 0);
    sort(all(ord), [&](int i, int j) { return head[i] < head[j]; });
    rearrange(ord, head, tail...);
}

bool in_rect(int i, int j, int h, int w) {
    return 0 <= i and i < h and 0 <= j and j < w;
}

template<class T, class S>
vector<T> cumsum(const vector<S> &v, bool shift_one = true) {
    int n = v.size();
    vector<T> res;
    if (shift_one) {
        res.resize(n + 1);
        rep(i, n) res[i + 1] = res[i] + v[i];
    } else {
        res.resize(n);
        if (n) {
            res[0] = v[0];
            rep(i, 1, n) res[i] = res[i - 1] + v[i];
        }
    }
    return res;
}

vvi graph(int n, int m, bool directed = false, int origin = 1) {
    vvi G(n);
    rep(_, m) {
        INT(u, v);
        u -= origin, v -= origin;
        G[u].pb(v);
        if (!directed) G[v].pb(u);
    }
    return G;
}

template<class T>
vector<vector<pair<int, T>>> weighted_graph(int n, int m, bool directed = false, int origin = 1) {
    vector<vector<pair<int, T>>> G(n);
    rep(_, m) {
        int u, v;
        T w;
        scan(u, v, w);
        u -= origin, v -= origin;
        G[u].eb(v, w);
        if (!directed) G[v].eb(u, w);
    }
    return G;
}

int main() {
    INT(n, m);
    vvp G = weighted_graph<int>(n, n - 1, true);
    vvi ls(n);
    rep(i, m) {
        INT(s, t);
        ls[--s].pb(t);
    }
    vi init(n);
    vl dep(n);
    {
        vi sz(n);
        auto dfs = [&](auto &dfs, int u) -> void {
            sz[u] = SZ(ls[u]);
            if(!G[u].empty()) init[u] = G[u].back().first;
            for(auto &p : G[u]) {
                auto [v, len] = p;
                dep[v] = dep[u] + len;
                dfs(dfs, v);
                sz[u] += sz[v];
                if(sz[v] > sz[G[u][0].first]) swap(G[u][0], p);
            }
        };
        dfs(dfs, 0);
    }
    vlp ev;
    auto dfs = [&](auto &dfs, int u, set<ll> &st) -> void {
        if(G[u].empty()) {
            st = set<ll>(all(ls[u]));
            return;
        }
        dfs(dfs, G[u][0].first, st);
        if(init[u] == G[u][0].first) {
            st.insert(-dep[u]);
        }
        vlp cur;
        rep(i, 1, SZ(G[u])) {
            set<ll> ns;
            dfs(dfs, G[u][i].first, ns);
            if(init[u] == G[u][i].first) ns.insert(-dep[u]);
            for(ll j : ns) cur.eb(j, i);
        }
        sort(all(cur));
        // cerr << u << endl;
        // cerr << st << endl;
        // cerr << cur << endl;
        if(SZ(cur)) {
            auto it = st.lower_bound(cur[0].first);
            int pre = 0;
            for(auto [t, s] : cur) {
                auto it2 = st.lower_bound(t);
                if(it != it2) {
                    ev.eb(dep[u] + *prev(it) + 1, dep[u] + *it);
                    it = it2;
                    pre = 0;
                }
                if(pre != s and it != st.begin()) ev.eb(dep[u] + *prev(it) + 1, dep[u] + t);
                pre = s;
                it = next(st.insert(t).first);
            }
            if(it != st.end()) ev.eb(dep[u] + *prev(it) + 1, dep[u] + *it);
        }
        st.erase(-dep[u]);
        for(ll t : ls[u]) st.insert(t);
    };
    set<ll> st;
    dfs(dfs, 0, st);
    sort(all(ev));
    // cerr << ev << endl;
    ll now = 1;
    int it = 0;
    priority_queue<ll, vl, greater<ll>> pq;
    ll explode = -1;
    while(true) {
        while(it < SZ(ev) and ev[it].first == now) {
            pq.push(ev[it++].second);
        }
        if(pq.empty()) {
            if(it == SZ(ev)) break;
            now = ev[it].first;
            continue;
        }
        pq.pop();
        if(!pq.empty() and pq.top() == now) {
            explode = now;
            break;
        }
        ++now;
    }
    int cnt = 0;
    for(auto [l, r] : ev) if(r < explode or explode == -1) ++cnt;
    fin(explode, cnt);
}


Comments

Submit
0 Comments
More Questions

Partitioning binary strings
Special sets
Smallest chosen word
Going to office
Color the boxes
Missing numbers
Maximum sum
13 Reasons Why
Friend's Relationship
Health of a person
Divisibility
A. Movement
Numbers in a matrix
Sequences
Split houses
Divisible
Three primes
Coprimes
Cost of balloons
One String No Trouble
Help Jarvis!
Lift queries
Goki and his breakup
Ali and Helping innocent people
Book of Potion making
Duration
Birthday Party
e-maze-in
Bricks Game
Char Sum